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Pentamino – Pentomino

Règle du jeu
Au départ, le tablier de 64 cases est vide. Les 12 pièces (pentaminos) sont placées à
la disposition des deux joueurs.

À tour de rôle, chaque joueur prend une pièce et la pose sur des cases libres, sans
nécessairement toucher une pièce déjà posée.

Le premier joueur qui ne peut pas jouer a perdu.
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Pentominoes: A First Player Win

HILARIE K. ORMAN

Abstract. This article reports on a search-based computer proof that the
game of pentominoes is a first-player win. Three search strategies were used
in this proof, with dramatically different effects on the running time of the
search. The two most effective strategies are compared and discussed.

The Short History of Pentominoes

Pentominoes is a two-player game involving twelve pieces—the regular 5-
ominoes shown in Figure 1—and an 8×8 board. Players alternate placing pieces
on the board, covering whole squares and without overlap. The player who can-
not make a move loses. The game was first proposed by Solomon W. Golomb in
the mid-fifties. Martin Gardner [1959] popularized it, also citing Golomb’s work
[1954] about polyominoes and checkerboards. See also [Golomb 1962; 1965].

In 1971, it was suggested that the game could be solved by computer search
[Beeler et al. 1972], but no attempts to implement such a solution are known
to me. In 1975 I wrote a computer program that played pentominoes, and
used a PDP-11/45 computer to investigate the feasibility of a complete solution.
Although the program was an excellent player against human opponents, at that
time a complete solution was unattainable.

Today, high-speed workstations have changed the picture. A new search pro-
gram exhaustively examined the game subtrees arising from certain two first
moves. One of the moves was proved to be a win, and this assertion was ver-
ified by an independent program. The winning move was determined in about
two weeks of execution time on a 64-bit 175 MHz DEC Alpha processor. The
verification was done on a Sun IPC Sparcstation in about five days.

Figure 1. The twelve regular pentominoes.

339



340 HILARIE K. ORMAN

Figure 2. Left: One of the first-player moves that allows the minimum number

of responses. Right: That move turns out to be losing, if the second player

counters as shown.

The Search Begins

The computer program used to search the game tree is written in C and uses a
simple backtracking search method. The moves and board state are represented
as bit vectors. At the beginning of the game all possible moves are in the legal
move list. At each ply, the legal move list is reduced, eliminating moves that are
no longer possible. If all moves at depth n are losses, the value Win is returned
to depth n − 1. If some move at depth n evaluates to Win, the value Loss is
returned to depth n− 1.

A Losing Move. At the start of the game, there are 2308 possible moves, or
296 when symmetries are discounted. After the first move there are between
1181 and about 2000 replies. The search was originally conducted for one of the
optimally restrictive moves, using the long “L” piece (Figure 2, left). There are
1181 replies to this move.

All replies to this first move were analyzed, the work being divided among
several computers: an Intel Paragon, six Hewlett-Packard 720’s, and four DEC
RS3000 model 600 (Alpha) machines. The program ran for about two months.
Of the 1181 replies, exactly two of them refute the opening move. In addition to
the reply shown in Figure 2 (right), the straight piece can be moved down one
square.

It is interesting to note the importance of the straight piece in this. A possibly
related fact is that all solutions for packing all twelve pentominoes onto the board
involve placing the this piece along an edge.

While this program was running, a few inefficiencies in its implementation
were discovered. The program always sorted the move list by the number of
replies available; in effect, one move lookahead was used. This is useful if there
are a large number of moves available, but it is wasteful if there are few. Also,
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Figure 3. A winning move.

the program did not take advantage of the 64-bit wordsize of the DEC Alpha
machines. With the 64-bit words, testing a possible move takes only one instruc-
tion. The program was rewritten to correct both deficiencies before proceeding.
The sorting was restricted to the first few plies.

A Winning Move. Using the new program, the search was restarted with the
opening move shown in Figure 3, one of the second most restrictive (1197 replies).
Using two DEC Alphas, almost all replies were examined in two weeks of running
time. The remaining replies were examined using other machines. This provided
strong evidence that the move illustrated is a win for the first player.

To validate the move, Richard Schroeppel wrote an independent program to
check the claimed win. The original program recorded the winning third-ply
move that it found for each second-ply move, and the checking program took as
input three plies and then solved the game with the usual backtracking search.
The checking program ran on a Sun IPC Sparcstation for about five days.

Statistics on Strategies

The solving program and the checking program kept statistics about the
amount of effort expended for each validation, which revealed interesting facts
about the game tree. The most important contributor to the speed of the pro-
gram is the ability to choose a winning move for the first player quickly at each
first-player ply. Based on examining two opening moves, we might conjecture
that about half of the possible opening moves are wins for the first player. But
the fact that the first move is only very narrowly defeated by the second player
indicates that it is unreasonable to expect the game tree to be well balanced.

The statistics recorded were the number of third-ply moves that were exam-
ined before finding a winning move for the first player, and the total number of
board positions examined at the third and fourth plies.
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lower limit of bucket 1 2 22 23 24 25 26 27 28

frequency 121 235 252 181 198 134 80 17 1

Table 1. Distribution of third-ply moves examined by the solving program.

Overall, the solving program examined 22 billion board positions. Empirical
evidence indicates that a typical game involves ten moves; it is known that
the smallest possible number of moves is five, and the largest is twelve [Gardner
1959]. On the average, for each second-ply move, the program examined eighteen
third-ply moves for the first player before finding a winning move. A good
strategy for selecting the third-ply move is the key to minimizing the running
time of the program.

Table 1 shows the distribution of third-ply moves examined by the solving
program. Each column represents a bucket (range of trials); the bottom row
gives the number of times that a winning move was found using a number of
trials in the range. Although the program often found a win within seven tries
(the first three buckets), it sometimes had to examine nearly half the available
moves. The sum of the entries in the bottom row is slightly greater than the
number of replies (1197) because there was some overlap in the ranges examined
by the computers running the solving program.

Table 2 shows the distribution of number of board positions examined after
each third-ply move. Each column represents a range of board positions, and
the two bottom rows give the number of instances of counts in this range for the
solving and checking programs. For example, the checking program needed to
examine fewer than 1,048,576 positions in four cases; the solving program never
examined this few. (Again, the counts reflect some overlap in the positions
examined.)

It is interesting to note that the checking program did less work than the
solving program as measured by the number of board positions examined. This
means that it is more effective at finding a winning move for the first player. This
was surprising, because the checking program does not have the moves sorted
by number of replies; it tries the first piece at all possible board locations, then
the next piece, etc., in a fixed pattern (pruned at each ply by eliminating illegal
moves). This latter algorithm avoids some of the very long searches done by
the first method. A third simple search strategy is to try each piece at board
position (0, 0), then each piece at position (0, 1), etc. This turns out to be at

lower limit of bucket 219 220 221 222 223 224 225 226 227

solver frequency 5 41 256 481 282 127 24 3
checker frequency 4 9 58 289 527 279 49 3

Table 2. Distribution of total evaluations for the solving and checking programs,

which used different strategies.
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Figure 4. Another winning move, suggested by Golomb.

least ten times slower than the first two methods, and it is definitely not suitable
for solving the game.

There are two plausible explanations for the checking program’s search strat-
egy being faster than that of the solving program. One reason might be that, in
general, occupying a critical region of the board is more important than which
piece is used for the occupation. The checking program does this by attempting
to place pieces quickly without regard for which piece it is placing. A second
explanation is based on noting that the program tries the thin pieces (having a
linear block of four squares) first. The key to the game might be the placement of
these pieces; the importance of the straight piece in refuting the most restrictive
opening move is corroborating evidence.

Another Winning Move

Golomb (personal communication) suggested another winning move, one that
comes closest to dividing the board symmetrically (Figure 4). This move indeed
survives examination by the checking program. Schroeppel’s validating program
has not been used, because experience in double-checking the two moves de-
scribed above has given us confidence in the first program.

The strategy of dividing the board symmetrically may be a sound one, and it
would be interesting to see if it applies through the game tree.

Other Problems

It should be possible to determine all opening moves that are first-player
wins, thus determining how much of an advantage the first player has. This task
becomes much more difficult as less restrictive opening moves are examined.
However, the checking program’s strategy for move selection might offset this
effect enough to make the overall running time reasonable.
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A computationally challenging problem is to solve the similar game involving
35 hexominoes and a 15× 15 board.
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